

Supported by

Office of Science

Qualification of LLD Over the Full NSTX Operating Range of Current and Power

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U ORNL** PPPL PSI **Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. Gerhardt, M. Bell, J. Canik, A. Diallo, J. Kallman, S. Kaye, E. Kolemen, R. Kaita, H. Kugel, R. Maingi, J. Menard, A. McLean, D. Mueller, Y. Ren, S. A. Sabbagh, C. Skinner, V. Soukhanovskii Anybody Else?

> NSTX 2010 Research Forum LR TSG Breakout Session Dec. 2nd, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Overview

- Background
 - LLD commissioning XP (Kugel, et al.) will do explicit scans of triangularity (I think).
 - Follow-up XP by Maingi et al. addressing δ_{L} dependence.
 - First fuelling optimization with SGI by Soukhanvoskii.
 - XP proposals by Soukhanovskii, Kallman, Jaworski, will address important issues in SOL and boundary physics.
 - Proposal to assess T_{LLD} effects by Soukhanovskii....erosion, evaportion,...
 - There is utility in further developing the reduced-density H-mode operating space with a warm LLD.
- Goals
 - Qualify a range of I_P and P_{NB} scenarios in a fixed shape (shape TBD).
 - Understand operational issues over this range of parameters.
 - Develop a first understanding of transport, stability, f_{BS} , f_{NBI} scalings with I_P with Lithium
 - Develop operational scenarios for other other TSGs and XPs...
 - Recipes for shots at various I_P and power levels.
 - Compare at least some cases to "comparable" cold LLD configurations.
 - Lots of piggy-back opportunities (craft XP to make it most useful to the most people):
 - Pedestal height studies (Diallo, Maingi).
 - Further SOL characterization (Soukhanovskii, Kallman, Jaworski, McLean, many others).
 - Core turbulence (Ren)
- Contributes to
 - Efficient NSTX operation with LLD

0 NSTX R(11-3): Assessitheorelationship between hithjated sufface conditions) and edge 28,700 core 2

Issues To Be Addressed

- Operations Issues
 - Develop intuition about the fuelling needs vs. I_P and P_{inj} .
 - Measure heating of the LLD surface over a range of parameters.
 - Get first hint if the β -limit is lower when the collisionality is reduced.
 - Develop broader set of early EFC techniques.
 - Verify that H-mode access is not a problem.
 - Field line angle effects.
 - Disruption consequences at various levels of I_P and P_{ini}?
 - See how impurity accumulation changes with I_P .
 - Develop targets for later impurity reduction XPs.
- Physics Issues (A few examples)
 - I_P and P_{ini} scaling of global confinement & non-inductive current fractions: R(11-3)
 - Slowed evolution of the current profile at higher T_e, larger NBCD?
 - Current profile evolution.
 - First look at SOL widths scaling with I_P at reduced collisionality.
 - First look at pedestal height and ELMs vs. I_P.
 - Impurity sources.

We don't even know all the issues that will come up \rightarrow key to be flexible in this XP. SPG not interested in "owning" all this \rightarrow make it a team effort to maximize science output.

First-Cut XP Plan

- Finish commissioning and pumping/fuelling XPs will
 - Learn the effects of triangularity.
 - Get a good look at pumping/fuelling balance.
 - First look at early EFC techniques.
 - Pick a reference case from these scans.
- Conduct I_P scans around the reference.
 - For instance, 700, 850, 1000, 1150 kA?
 - This should be "easy"...if it isn't, then we need to understand why.
 - Try this at constant density?...traditionally $n_e \propto I_P$ in D_2 H-mode.
- For one of these cases, make a systematic injected power scan. (15 shots?)
 - For instance, 2,3,4,5 MW, up to the beta limit (use fast feedback and DEFC).
- Repeat some/all of these cases with a cold LLD. (15 shots)
 - Get good baselines comparisons with liquid lithium at matched power levels.
 - Same power or same W_{MHD}?

(15 shots?)

Analogy: Commercial Airliner (Thanks to H. Kugel)

- Design and build an airplane
 - Much previous work by ORNL, PPPL and SNL...almost done!
- First test flight
 - Commissioning XP.
- Qualify it for flight in a range of conditions.
 - Pumping studies and first fuelling XPs.
 - Early EFC.
 - Jon's MHD submission about stability aspects vs. collisionality.
 - This XP.
- Sell it to customers.
 - The many XPs in other TSGs.

